Open Problem: Tightness of maximum likelihood semidefinite relaxations
نویسندگان
چکیده
We have observed an interesting, yet unexplained, phenomenon: Semidefinite programming (SDP) based relaxations of maximum likelihood estimators (MLE) tend to be tight in recovery problems with noisy data, even when MLE cannot exactly recover the ground truth. Several results establish tightness of SDP based relaxations in the regime where exact recovery from MLE is possible. However, to the best of our knowledge, their tightness is not understood beyond this regime. As an illustrative example, we focus on the generalized Procrustes problem.
منابع مشابه
Approximate maximum-likelihood estimation using semidefinite programming
We consider semidefinite relaxations of a quadratic optimization problem with polynomial constraints. This is an extension of quadratic problems with boolean variables. Such combinatorial problems can in general not be solved in polynomial time. Semidefinite relaxations has been proposed as a promising technique to give provable good bounds on certain boolean quadratic problems in polynomial ti...
متن کاملSemidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملExploiting semidefinite relaxations in constraint programming
Constraint programming uses enumeration and search tree pruning to solve combinatorial optimization problems. In order to speed up this solution process, we investigate the use of semidefinite relaxations within constraint programming. In principle, we use the solution of a semidefinite relaxation to guide the traversal of the search tree, using a limited discrepancy search strategy. Furthermor...
متن کاملCsc5160: Combinatorial Optimization and Approximation Algorithms Topic: Semidefinite Programming 22.1 Semidefinite Programming Problem
In this lecture, we provide another class of relaxations, called Semidefinite Programming Relaxation. These serve as relaxations for several NP-hard problems, in particular, for problems that can be expressed as strict quadratic programs. The relaxed problems, together with techniques like randomized rounding, give good approximation algorithms to hard combinatorial problems. We will illustrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014